| 1 | #include "param.h" |
| 2 | #include "types.h" |
| 3 | #include "defs.h" |
| 4 | #include "x86.h" |
| 5 | #include "memlayout.h" |
| 6 | #include "mmu.h" |
| 7 | #include "proc.h" |
| 8 | #include "elf.h" |
| 9 | |
| 10 | extern char data[]; // defined by kernel.ld |
| 11 | pde_t *kpgdir; // for use in scheduler() |
| 12 | |
| 13 | // Set up CPU's kernel segment descriptors. |
| 14 | // Run once on entry on each CPU. |
| 15 | void |
| 16 | seginit(void) |
| 17 | { |
| 18 | struct cpu *c; |
| 19 | |
| 20 | // Map "logical" addresses to virtual addresses using identity map. |
| 21 | // Cannot share a CODE descriptor for both kernel and user |
| 22 | // because it would have to have DPL_USR, but the CPU forbids |
| 23 | // an interrupt from CPL=0 to DPL=3. |
| 24 | c = &cpus[cpuid()]; |
| 25 | c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0); |
| 26 | c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0); |
| 27 | c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER); |
| 28 | c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER); |
| 29 | lgdt(c->gdt, sizeof(c->gdt)); |
| 30 | } |
| 31 | |
| 32 | // Return the address of the PTE in page table pgdir |
| 33 | // that corresponds to virtual address va. If alloc!=0, |
| 34 | // create any required page table pages. |
| 35 | static pte_t * |
| 36 | walkpgdir(pde_t *pgdir, const void *va, int alloc) |
| 37 | { |
| 38 | pde_t *pde; |
| 39 | pte_t *pgtab; |
| 40 | |
| 41 | pde = &pgdir[PDX(va)]; |
| 42 | if(*pde & PTE_P){ |
| 43 | pgtab = (pte_t*)P2V(PTE_ADDR(*pde)); |
| 44 | } else { |
| 45 | if(!alloc || (pgtab = (pte_t*)kalloc()) == 0) |
| 46 | return 0; |
| 47 | // Make sure all those PTE_P bits are zero. |
| 48 | memset(pgtab, 0, PGSIZE); |
| 49 | // The permissions here are overly generous, but they can |
| 50 | // be further restricted by the permissions in the page table |
| 51 | // entries, if necessary. |
| 52 | *pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U; |
| 53 | } |
| 54 | return &pgtab[PTX(va)]; |
| 55 | } |
| 56 | |
| 57 | // Create PTEs for virtual addresses starting at va that refer to |
| 58 | // physical addresses starting at pa. va and size might not |
| 59 | // be page-aligned. |
| 60 | static int |
| 61 | mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm) |
| 62 | { |
| 63 | char *a, *last; |
| 64 | pte_t *pte; |
| 65 | |
| 66 | a = (char*)PGROUNDDOWN((uint)va); |
| 67 | last = (char*)PGROUNDDOWN(((uint)va) + size - 1); |
| 68 | for(;;){ |
| 69 | if((pte = walkpgdir(pgdir, a, 1)) == 0) |
| 70 | return -1; |
| 71 | if(*pte & PTE_P) |
| 72 | panic("remap" ); |
| 73 | *pte = pa | perm | PTE_P; |
| 74 | if(a == last) |
| 75 | break; |
| 76 | a += PGSIZE; |
| 77 | pa += PGSIZE; |
| 78 | } |
| 79 | return 0; |
| 80 | } |
| 81 | |
| 82 | // There is one page table per process, plus one that's used when |
| 83 | // a CPU is not running any process (kpgdir). The kernel uses the |
| 84 | // current process's page table during system calls and interrupts; |
| 85 | // page protection bits prevent user code from using the kernel's |
| 86 | // mappings. |
| 87 | // |
| 88 | // setupkvm() and exec() set up every page table like this: |
| 89 | // |
| 90 | // 0..KERNBASE: user memory (text+data+stack+heap), mapped to |
| 91 | // phys memory allocated by the kernel |
| 92 | // KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space) |
| 93 | // KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data) |
| 94 | // for the kernel's instructions and r/o data |
| 95 | // data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP, |
| 96 | // rw data + free physical memory |
| 97 | // 0xfe000000..0: mapped direct (devices such as ioapic) |
| 98 | // |
| 99 | // The kernel allocates physical memory for its heap and for user memory |
| 100 | // between V2P(end) and the end of physical memory (PHYSTOP) |
| 101 | // (directly addressable from end..P2V(PHYSTOP)). |
| 102 | |
| 103 | // This table defines the kernel's mappings, which are present in |
| 104 | // every process's page table. |
| 105 | static struct kmap { |
| 106 | void *virt; |
| 107 | uint phys_start; |
| 108 | uint phys_end; |
| 109 | int perm; |
| 110 | } kmap[] = { |
| 111 | { (void*)KERNBASE, 0, EXTMEM, PTE_W}, // I/O space |
| 112 | { (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kern text+rodata |
| 113 | { (void*)data, V2P(data), PHYSTOP, PTE_W}, // kern data+memory |
| 114 | { (void*)DEVSPACE, DEVSPACE, 0, PTE_W}, // more devices |
| 115 | }; |
| 116 | |
| 117 | // Set up kernel part of a page table. |
| 118 | pde_t* |
| 119 | setupkvm(void) |
| 120 | { |
| 121 | pde_t *pgdir; |
| 122 | struct kmap *k; |
| 123 | |
| 124 | if((pgdir = (pde_t*)kalloc()) == 0) |
| 125 | return 0; |
| 126 | memset(pgdir, 0, PGSIZE); |
| 127 | if (P2V(PHYSTOP) > (void*)DEVSPACE) |
| 128 | panic("PHYSTOP too high" ); |
| 129 | for(k = kmap; k < &kmap[NELEM(kmap)]; k++) |
| 130 | if(mappages(pgdir, k->virt, k->phys_end - k->phys_start, |
| 131 | (uint)k->phys_start, k->perm) < 0) { |
| 132 | freevm(pgdir); |
| 133 | return 0; |
| 134 | } |
| 135 | return pgdir; |
| 136 | } |
| 137 | |
| 138 | // Allocate one page table for the machine for the kernel address |
| 139 | // space for scheduler processes. |
| 140 | void |
| 141 | kvmalloc(void) |
| 142 | { |
| 143 | kpgdir = setupkvm(); |
| 144 | switchkvm(); |
| 145 | } |
| 146 | |
| 147 | // Switch h/w page table register to the kernel-only page table, |
| 148 | // for when no process is running. |
| 149 | void |
| 150 | switchkvm(void) |
| 151 | { |
| 152 | lcr3(V2P(kpgdir)); // switch to the kernel page table |
| 153 | } |
| 154 | |
| 155 | // Switch TSS and h/w page table to correspond to process p. |
| 156 | void |
| 157 | switchuvm(struct proc *p) |
| 158 | { |
| 159 | if(p == 0) |
| 160 | panic("switchuvm: no process" ); |
| 161 | if(p->kstack == 0) |
| 162 | panic("switchuvm: no kstack" ); |
| 163 | if(p->pgdir == 0) |
| 164 | panic("switchuvm: no pgdir" ); |
| 165 | |
| 166 | pushcli(); |
| 167 | mycpu()->gdt[SEG_TSS] = SEG16(STS_T32A, &mycpu()->ts, |
| 168 | sizeof(mycpu()->ts)-1, 0); |
| 169 | mycpu()->gdt[SEG_TSS].s = 0; |
| 170 | mycpu()->ts.ss0 = SEG_KDATA << 3; |
| 171 | mycpu()->ts.esp0 = (uint)p->kstack + KSTACKSIZE; |
| 172 | // setting IOPL=0 in eflags *and* iomb beyond the tss segment limit |
| 173 | // forbids I/O instructions (e.g., inb and outb) from user space |
| 174 | mycpu()->ts.iomb = (ushort) 0xFFFF; |
| 175 | ltr(SEG_TSS << 3); |
| 176 | lcr3(V2P(p->pgdir)); // switch to process's address space |
| 177 | popcli(); |
| 178 | } |
| 179 | |
| 180 | // Load the initcode into address 0 of pgdir. |
| 181 | // sz must be less than a page. |
| 182 | void |
| 183 | inituvm(pde_t *pgdir, char *init, uint sz) |
| 184 | { |
| 185 | char *mem; |
| 186 | |
| 187 | if(sz >= PGSIZE) |
| 188 | panic("inituvm: more than a page" ); |
| 189 | mem = kalloc(); |
| 190 | memset(mem, 0, PGSIZE); |
| 191 | mappages(pgdir, 0, PGSIZE, V2P(mem), PTE_W|PTE_U); |
| 192 | memmove(mem, init, sz); |
| 193 | } |
| 194 | |
| 195 | // Load a program segment into pgdir. addr must be page-aligned |
| 196 | // and the pages from addr to addr+sz must already be mapped. |
| 197 | int |
| 198 | loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz) |
| 199 | { |
| 200 | uint i, pa, n; |
| 201 | pte_t *pte; |
| 202 | |
| 203 | if((uint) addr % PGSIZE != 0) |
| 204 | panic("loaduvm: addr must be page aligned" ); |
| 205 | for(i = 0; i < sz; i += PGSIZE){ |
| 206 | if((pte = walkpgdir(pgdir, addr+i, 0)) == 0) |
| 207 | panic("loaduvm: address should exist" ); |
| 208 | pa = PTE_ADDR(*pte); |
| 209 | if(sz - i < PGSIZE) |
| 210 | n = sz - i; |
| 211 | else |
| 212 | n = PGSIZE; |
| 213 | if(readi(ip, P2V(pa), offset+i, n) != n) |
| 214 | return -1; |
| 215 | } |
| 216 | return 0; |
| 217 | } |
| 218 | |
| 219 | // Allocate page tables and physical memory to grow process from oldsz to |
| 220 | // newsz, which need not be page aligned. Returns new size or 0 on error. |
| 221 | int |
| 222 | allocuvm(pde_t *pgdir, uint oldsz, uint newsz) |
| 223 | { |
| 224 | char *mem; |
| 225 | uint a; |
| 226 | |
| 227 | if(newsz >= KERNBASE) |
| 228 | return 0; |
| 229 | if(newsz < oldsz) |
| 230 | return oldsz; |
| 231 | |
| 232 | a = PGROUNDUP(oldsz); |
| 233 | for(; a < newsz; a += PGSIZE){ |
| 234 | mem = kalloc(); |
| 235 | if(mem == 0){ |
| 236 | cprintf("allocuvm out of memory\n" ); |
| 237 | deallocuvm(pgdir, newsz, oldsz); |
| 238 | return 0; |
| 239 | } |
| 240 | memset(mem, 0, PGSIZE); |
| 241 | if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){ |
| 242 | cprintf("allocuvm out of memory (2)\n" ); |
| 243 | deallocuvm(pgdir, newsz, oldsz); |
| 244 | kfree(mem); |
| 245 | return 0; |
| 246 | } |
| 247 | } |
| 248 | return newsz; |
| 249 | } |
| 250 | |
| 251 | // Deallocate user pages to bring the process size from oldsz to |
| 252 | // newsz. oldsz and newsz need not be page-aligned, nor does newsz |
| 253 | // need to be less than oldsz. oldsz can be larger than the actual |
| 254 | // process size. Returns the new process size. |
| 255 | int |
| 256 | deallocuvm(pde_t *pgdir, uint oldsz, uint newsz) |
| 257 | { |
| 258 | pte_t *pte; |
| 259 | uint a, pa; |
| 260 | |
| 261 | if(newsz >= oldsz) |
| 262 | return oldsz; |
| 263 | |
| 264 | a = PGROUNDUP(newsz); |
| 265 | for(; a < oldsz; a += PGSIZE){ |
| 266 | pte = walkpgdir(pgdir, (char*)a, 0); |
| 267 | if(!pte) |
| 268 | a = PGADDR(PDX(a) + 1, 0, 0) - PGSIZE; |
| 269 | else if((*pte & PTE_P) != 0){ |
| 270 | pa = PTE_ADDR(*pte); |
| 271 | if(pa == 0) |
| 272 | panic("kfree" ); |
| 273 | char *v = P2V(pa); |
| 274 | kfree(v); |
| 275 | *pte = 0; |
| 276 | } |
| 277 | } |
| 278 | return newsz; |
| 279 | } |
| 280 | |
| 281 | // Free a page table and all the physical memory pages |
| 282 | // in the user part. |
| 283 | void |
| 284 | freevm(pde_t *pgdir) |
| 285 | { |
| 286 | uint i; |
| 287 | |
| 288 | if(pgdir == 0) |
| 289 | panic("freevm: no pgdir" ); |
| 290 | deallocuvm(pgdir, KERNBASE, 0); |
| 291 | for(i = 0; i < NPDENTRIES; i++){ |
| 292 | if(pgdir[i] & PTE_P){ |
| 293 | char * v = P2V(PTE_ADDR(pgdir[i])); |
| 294 | kfree(v); |
| 295 | } |
| 296 | } |
| 297 | kfree((char*)pgdir); |
| 298 | } |
| 299 | |
| 300 | // Clear PTE_U on a page. Used to create an inaccessible |
| 301 | // page beneath the user stack. |
| 302 | void |
| 303 | clearpteu(pde_t *pgdir, char *uva) |
| 304 | { |
| 305 | pte_t *pte; |
| 306 | |
| 307 | pte = walkpgdir(pgdir, uva, 0); |
| 308 | if(pte == 0) |
| 309 | panic("clearpteu" ); |
| 310 | *pte &= ~PTE_U; |
| 311 | } |
| 312 | |
| 313 | // Given a parent process's page table, create a copy |
| 314 | // of it for a child. |
| 315 | pde_t* |
| 316 | copyuvm(pde_t *pgdir, uint sz) |
| 317 | { |
| 318 | pde_t *d; |
| 319 | pte_t *pte; |
| 320 | uint pa, i, flags; |
| 321 | char *mem; |
| 322 | |
| 323 | if((d = setupkvm()) == 0) |
| 324 | return 0; |
| 325 | for(i = 0; i < sz; i += PGSIZE){ |
| 326 | if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0) |
| 327 | panic("copyuvm: pte should exist" ); |
| 328 | if(!(*pte & PTE_P)) |
| 329 | panic("copyuvm: page not present" ); |
| 330 | pa = PTE_ADDR(*pte); |
| 331 | flags = PTE_FLAGS(*pte); |
| 332 | if((mem = kalloc()) == 0) |
| 333 | goto bad; |
| 334 | memmove(mem, (char*)P2V(pa), PGSIZE); |
| 335 | if(mappages(d, (void*)i, PGSIZE, V2P(mem), flags) < 0) { |
| 336 | kfree(mem); |
| 337 | goto bad; |
| 338 | } |
| 339 | } |
| 340 | return d; |
| 341 | |
| 342 | bad: |
| 343 | freevm(d); |
| 344 | return 0; |
| 345 | } |
| 346 | |
| 347 | //PAGEBREAK! |
| 348 | // Map user virtual address to kernel address. |
| 349 | char* |
| 350 | uva2ka(pde_t *pgdir, char *uva) |
| 351 | { |
| 352 | pte_t *pte; |
| 353 | |
| 354 | pte = walkpgdir(pgdir, uva, 0); |
| 355 | if((*pte & PTE_P) == 0) |
| 356 | return 0; |
| 357 | if((*pte & PTE_U) == 0) |
| 358 | return 0; |
| 359 | return (char*)P2V(PTE_ADDR(*pte)); |
| 360 | } |
| 361 | |
| 362 | // Copy len bytes from p to user address va in page table pgdir. |
| 363 | // Most useful when pgdir is not the current page table. |
| 364 | // uva2ka ensures this only works for PTE_U pages. |
| 365 | int |
| 366 | copyout(pde_t *pgdir, uint va, void *p, uint len) |
| 367 | { |
| 368 | char *buf, *pa0; |
| 369 | uint n, va0; |
| 370 | |
| 371 | buf = (char*)p; |
| 372 | while(len > 0){ |
| 373 | va0 = (uint)PGROUNDDOWN(va); |
| 374 | pa0 = uva2ka(pgdir, (char*)va0); |
| 375 | if(pa0 == 0) |
| 376 | return -1; |
| 377 | n = PGSIZE - (va - va0); |
| 378 | if(n > len) |
| 379 | n = len; |
| 380 | memmove(pa0 + (va - va0), buf, n); |
| 381 | len -= n; |
| 382 | buf += n; |
| 383 | va = va0 + PGSIZE; |
| 384 | } |
| 385 | return 0; |
| 386 | } |
| 387 | |
| 388 | //PAGEBREAK! |
| 389 | // Blank page. |
| 390 | //PAGEBREAK! |
| 391 | // Blank page. |
| 392 | //PAGEBREAK! |
| 393 | // Blank page. |
| 394 | |
| 395 | |