| 1 | #include "types.h" |
| 2 | #include "defs.h" |
| 3 | #include "param.h" |
| 4 | #include "memlayout.h" |
| 5 | #include "mmu.h" |
| 6 | #include "x86.h" |
| 7 | #include "proc.h" |
| 8 | #include "spinlock.h" |
| 9 | |
| 10 | struct { |
| 11 | struct spinlock lock; |
| 12 | struct proc proc[NPROC]; |
| 13 | } ptable; |
| 14 | |
| 15 | static struct proc *initproc; |
| 16 | |
| 17 | int nextpid = 1; |
| 18 | extern void forkret(void); |
| 19 | extern void trapret(void); |
| 20 | |
| 21 | static void wakeup1(void *chan); |
| 22 | |
| 23 | void |
| 24 | pinit(void) |
| 25 | { |
| 26 | initlock(&ptable.lock, "ptable" ); |
| 27 | } |
| 28 | |
| 29 | // Must be called with interrupts disabled |
| 30 | int |
| 31 | cpuid() { |
| 32 | return mycpu()-cpus; |
| 33 | } |
| 34 | |
| 35 | // Must be called with interrupts disabled to avoid the caller being |
| 36 | // rescheduled between reading lapicid and running through the loop. |
| 37 | struct cpu* |
| 38 | mycpu(void) |
| 39 | { |
| 40 | int apicid, i; |
| 41 | |
| 42 | if(readeflags()&FL_IF) |
| 43 | panic("mycpu called with interrupts enabled\n" ); |
| 44 | |
| 45 | apicid = lapicid(); |
| 46 | // APIC IDs are not guaranteed to be contiguous. Maybe we should have |
| 47 | // a reverse map, or reserve a register to store &cpus[i]. |
| 48 | for (i = 0; i < ncpu; ++i) { |
| 49 | if (cpus[i].apicid == apicid) |
| 50 | return &cpus[i]; |
| 51 | } |
| 52 | panic("unknown apicid\n" ); |
| 53 | } |
| 54 | |
| 55 | // Disable interrupts so that we are not rescheduled |
| 56 | // while reading proc from the cpu structure |
| 57 | struct proc* |
| 58 | myproc(void) { |
| 59 | struct cpu *c; |
| 60 | struct proc *p; |
| 61 | pushcli(); |
| 62 | c = mycpu(); |
| 63 | p = c->proc; |
| 64 | popcli(); |
| 65 | return p; |
| 66 | } |
| 67 | |
| 68 | //PAGEBREAK: 32 |
| 69 | // Look in the process table for an UNUSED proc. |
| 70 | // If found, change state to EMBRYO and initialize |
| 71 | // state required to run in the kernel. |
| 72 | // Otherwise return 0. |
| 73 | static struct proc* |
| 74 | allocproc(void) |
| 75 | { |
| 76 | struct proc *p; |
| 77 | char *sp; |
| 78 | |
| 79 | acquire(&ptable.lock); |
| 80 | |
| 81 | for(p = ptable.proc; p < &ptable.proc[NPROC]; p++) |
| 82 | if(p->state == UNUSED) |
| 83 | goto found; |
| 84 | |
| 85 | release(&ptable.lock); |
| 86 | return 0; |
| 87 | |
| 88 | found: |
| 89 | p->state = EMBRYO; |
| 90 | p->pid = nextpid++; |
| 91 | |
| 92 | release(&ptable.lock); |
| 93 | |
| 94 | // Allocate kernel stack. |
| 95 | if((p->kstack = kalloc()) == 0){ |
| 96 | p->state = UNUSED; |
| 97 | return 0; |
| 98 | } |
| 99 | sp = p->kstack + KSTACKSIZE; |
| 100 | |
| 101 | // Leave room for trap frame. |
| 102 | sp -= sizeof *p->tf; |
| 103 | p->tf = (struct trapframe*)sp; |
| 104 | |
| 105 | // Set up new context to start executing at forkret, |
| 106 | // which returns to trapret. |
| 107 | sp -= 4; |
| 108 | *(uint*)sp = (uint)trapret; |
| 109 | |
| 110 | sp -= sizeof *p->context; |
| 111 | p->context = (struct context*)sp; |
| 112 | memset(p->context, 0, sizeof *p->context); |
| 113 | p->context->eip = (uint)forkret; |
| 114 | |
| 115 | return p; |
| 116 | } |
| 117 | |
| 118 | //PAGEBREAK: 32 |
| 119 | // Set up first user process. |
| 120 | void |
| 121 | userinit(void) |
| 122 | { |
| 123 | struct proc *p; |
| 124 | extern char _binary_initcode_start[], _binary_initcode_size[]; |
| 125 | |
| 126 | p = allocproc(); |
| 127 | |
| 128 | initproc = p; |
| 129 | if((p->pgdir = setupkvm()) == 0) |
| 130 | panic("userinit: out of memory?" ); |
| 131 | inituvm(p->pgdir, _binary_initcode_start, (int)_binary_initcode_size); |
| 132 | p->sz = PGSIZE; |
| 133 | memset(p->tf, 0, sizeof(*p->tf)); |
| 134 | p->tf->cs = (SEG_UCODE << 3) | DPL_USER; |
| 135 | p->tf->ds = (SEG_UDATA << 3) | DPL_USER; |
| 136 | p->tf->es = p->tf->ds; |
| 137 | p->tf->ss = p->tf->ds; |
| 138 | p->tf->eflags = FL_IF; |
| 139 | p->tf->esp = PGSIZE; |
| 140 | p->tf->eip = 0; // beginning of initcode.S |
| 141 | |
| 142 | safestrcpy(p->name, "initcode" , sizeof(p->name)); |
| 143 | p->cwd = namei("/" ); |
| 144 | |
| 145 | // this assignment to p->state lets other cores |
| 146 | // run this process. the acquire forces the above |
| 147 | // writes to be visible, and the lock is also needed |
| 148 | // because the assignment might not be atomic. |
| 149 | acquire(&ptable.lock); |
| 150 | |
| 151 | p->state = RUNNABLE; |
| 152 | |
| 153 | release(&ptable.lock); |
| 154 | } |
| 155 | |
| 156 | // Grow current process's memory by n bytes. |
| 157 | // Return 0 on success, -1 on failure. |
| 158 | int |
| 159 | growproc(int n) |
| 160 | { |
| 161 | uint sz; |
| 162 | struct proc *curproc = myproc(); |
| 163 | |
| 164 | sz = curproc->sz; |
| 165 | if(n > 0){ |
| 166 | if((sz = allocuvm(curproc->pgdir, sz, sz + n)) == 0) |
| 167 | return -1; |
| 168 | } else if(n < 0){ |
| 169 | if((sz = deallocuvm(curproc->pgdir, sz, sz + n)) == 0) |
| 170 | return -1; |
| 171 | } |
| 172 | curproc->sz = sz; |
| 173 | switchuvm(curproc); |
| 174 | return 0; |
| 175 | } |
| 176 | |
| 177 | // Create a new process copying p as the parent. |
| 178 | // Sets up stack to return as if from system call. |
| 179 | // Caller must set state of returned proc to RUNNABLE. |
| 180 | int |
| 181 | fork(void) |
| 182 | { |
| 183 | int i, pid; |
| 184 | struct proc *np; |
| 185 | struct proc *curproc = myproc(); |
| 186 | |
| 187 | // Allocate process. |
| 188 | if((np = allocproc()) == 0){ |
| 189 | return -1; |
| 190 | } |
| 191 | |
| 192 | // Copy process state from proc. |
| 193 | if((np->pgdir = copyuvm(curproc->pgdir, curproc->sz)) == 0){ |
| 194 | kfree(np->kstack); |
| 195 | np->kstack = 0; |
| 196 | np->state = UNUSED; |
| 197 | return -1; |
| 198 | } |
| 199 | np->sz = curproc->sz; |
| 200 | np->parent = curproc; |
| 201 | *np->tf = *curproc->tf; |
| 202 | |
| 203 | // Clear %eax so that fork returns 0 in the child. |
| 204 | np->tf->eax = 0; |
| 205 | |
| 206 | for(i = 0; i < NOFILE; i++) |
| 207 | if(curproc->ofile[i]) |
| 208 | np->ofile[i] = filedup(curproc->ofile[i]); |
| 209 | np->cwd = idup(curproc->cwd); |
| 210 | |
| 211 | safestrcpy(np->name, curproc->name, sizeof(curproc->name)); |
| 212 | |
| 213 | pid = np->pid; |
| 214 | |
| 215 | acquire(&ptable.lock); |
| 216 | |
| 217 | np->state = RUNNABLE; |
| 218 | |
| 219 | release(&ptable.lock); |
| 220 | |
| 221 | return pid; |
| 222 | } |
| 223 | |
| 224 | // Exit the current process. Does not return. |
| 225 | // An exited process remains in the zombie state |
| 226 | // until its parent calls wait() to find out it exited. |
| 227 | void |
| 228 | exit(void) |
| 229 | { |
| 230 | struct proc *curproc = myproc(); |
| 231 | struct proc *p; |
| 232 | int fd; |
| 233 | |
| 234 | if(curproc == initproc) |
| 235 | panic("init exiting" ); |
| 236 | |
| 237 | // Close all open files. |
| 238 | for(fd = 0; fd < NOFILE; fd++){ |
| 239 | if(curproc->ofile[fd]){ |
| 240 | fileclose(curproc->ofile[fd]); |
| 241 | curproc->ofile[fd] = 0; |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | begin_op(); |
| 246 | iput(curproc->cwd); |
| 247 | end_op(); |
| 248 | curproc->cwd = 0; |
| 249 | |
| 250 | acquire(&ptable.lock); |
| 251 | |
| 252 | // Parent might be sleeping in wait(). |
| 253 | wakeup1(curproc->parent); |
| 254 | |
| 255 | // Pass abandoned children to init. |
| 256 | for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){ |
| 257 | if(p->parent == curproc){ |
| 258 | p->parent = initproc; |
| 259 | if(p->state == ZOMBIE) |
| 260 | wakeup1(initproc); |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | // Jump into the scheduler, never to return. |
| 265 | curproc->state = ZOMBIE; |
| 266 | sched(); |
| 267 | panic("zombie exit" ); |
| 268 | } |
| 269 | |
| 270 | // Wait for a child process to exit and return its pid. |
| 271 | // Return -1 if this process has no children. |
| 272 | int |
| 273 | wait(void) |
| 274 | { |
| 275 | struct proc *p; |
| 276 | int havekids, pid; |
| 277 | struct proc *curproc = myproc(); |
| 278 | |
| 279 | acquire(&ptable.lock); |
| 280 | for(;;){ |
| 281 | // Scan through table looking for exited children. |
| 282 | havekids = 0; |
| 283 | for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){ |
| 284 | if(p->parent != curproc) |
| 285 | continue; |
| 286 | havekids = 1; |
| 287 | if(p->state == ZOMBIE){ |
| 288 | // Found one. |
| 289 | pid = p->pid; |
| 290 | kfree(p->kstack); |
| 291 | p->kstack = 0; |
| 292 | freevm(p->pgdir); |
| 293 | p->pid = 0; |
| 294 | p->parent = 0; |
| 295 | p->name[0] = 0; |
| 296 | p->killed = 0; |
| 297 | p->state = UNUSED; |
| 298 | release(&ptable.lock); |
| 299 | return pid; |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | // No point waiting if we don't have any children. |
| 304 | if(!havekids || curproc->killed){ |
| 305 | release(&ptable.lock); |
| 306 | return -1; |
| 307 | } |
| 308 | |
| 309 | // Wait for children to exit. (See wakeup1 call in proc_exit.) |
| 310 | sleep(curproc, &ptable.lock); //DOC: wait-sleep |
| 311 | } |
| 312 | } |
| 313 | |
| 314 | //PAGEBREAK: 42 |
| 315 | // Per-CPU process scheduler. |
| 316 | // Each CPU calls scheduler() after setting itself up. |
| 317 | // Scheduler never returns. It loops, doing: |
| 318 | // - choose a process to run |
| 319 | // - swtch to start running that process |
| 320 | // - eventually that process transfers control |
| 321 | // via swtch back to the scheduler. |
| 322 | void |
| 323 | scheduler(void) |
| 324 | { |
| 325 | struct proc *p; |
| 326 | struct cpu *c = mycpu(); |
| 327 | c->proc = 0; |
| 328 | |
| 329 | for(;;){ |
| 330 | // Enable interrupts on this processor. |
| 331 | sti(); |
| 332 | |
| 333 | // Loop over process table looking for process to run. |
| 334 | acquire(&ptable.lock); |
| 335 | for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){ |
| 336 | if(p->state != RUNNABLE) |
| 337 | continue; |
| 338 | |
| 339 | // Switch to chosen process. It is the process's job |
| 340 | // to release ptable.lock and then reacquire it |
| 341 | // before jumping back to us. |
| 342 | c->proc = p; |
| 343 | switchuvm(p); |
| 344 | p->state = RUNNING; |
| 345 | |
| 346 | swtch(&(c->scheduler), p->context); |
| 347 | switchkvm(); |
| 348 | |
| 349 | // Process is done running for now. |
| 350 | // It should have changed its p->state before coming back. |
| 351 | c->proc = 0; |
| 352 | } |
| 353 | release(&ptable.lock); |
| 354 | |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | // Enter scheduler. Must hold only ptable.lock |
| 359 | // and have changed proc->state. Saves and restores |
| 360 | // intena because intena is a property of this |
| 361 | // kernel thread, not this CPU. It should |
| 362 | // be proc->intena and proc->ncli, but that would |
| 363 | // break in the few places where a lock is held but |
| 364 | // there's no process. |
| 365 | void |
| 366 | sched(void) |
| 367 | { |
| 368 | int intena; |
| 369 | struct proc *p = myproc(); |
| 370 | |
| 371 | if(!holding(&ptable.lock)) |
| 372 | panic("sched ptable.lock" ); |
| 373 | if(mycpu()->ncli != 1) |
| 374 | panic("sched locks" ); |
| 375 | if(p->state == RUNNING) |
| 376 | panic("sched running" ); |
| 377 | if(readeflags()&FL_IF) |
| 378 | panic("sched interruptible" ); |
| 379 | intena = mycpu()->intena; |
| 380 | swtch(&p->context, mycpu()->scheduler); |
| 381 | mycpu()->intena = intena; |
| 382 | } |
| 383 | |
| 384 | // Give up the CPU for one scheduling round. |
| 385 | void |
| 386 | yield(void) |
| 387 | { |
| 388 | acquire(&ptable.lock); //DOC: yieldlock |
| 389 | myproc()->state = RUNNABLE; |
| 390 | sched(); |
| 391 | release(&ptable.lock); |
| 392 | } |
| 393 | |
| 394 | // A fork child's very first scheduling by scheduler() |
| 395 | // will swtch here. "Return" to user space. |
| 396 | void |
| 397 | forkret(void) |
| 398 | { |
| 399 | static int first = 1; |
| 400 | // Still holding ptable.lock from scheduler. |
| 401 | release(&ptable.lock); |
| 402 | |
| 403 | if (first) { |
| 404 | // Some initialization functions must be run in the context |
| 405 | // of a regular process (e.g., they call sleep), and thus cannot |
| 406 | // be run from main(). |
| 407 | first = 0; |
| 408 | iinit(ROOTDEV); |
| 409 | initlog(ROOTDEV); |
| 410 | } |
| 411 | |
| 412 | // Return to "caller", actually trapret (see allocproc). |
| 413 | } |
| 414 | |
| 415 | // Atomically release lock and sleep on chan. |
| 416 | // Reacquires lock when awakened. |
| 417 | void |
| 418 | sleep(void *chan, struct spinlock *lk) |
| 419 | { |
| 420 | struct proc *p = myproc(); |
| 421 | |
| 422 | if(p == 0) |
| 423 | panic("sleep" ); |
| 424 | |
| 425 | if(lk == 0) |
| 426 | panic("sleep without lk" ); |
| 427 | |
| 428 | // Must acquire ptable.lock in order to |
| 429 | // change p->state and then call sched. |
| 430 | // Once we hold ptable.lock, we can be |
| 431 | // guaranteed that we won't miss any wakeup |
| 432 | // (wakeup runs with ptable.lock locked), |
| 433 | // so it's okay to release lk. |
| 434 | if(lk != &ptable.lock){ //DOC: sleeplock0 |
| 435 | acquire(&ptable.lock); //DOC: sleeplock1 |
| 436 | release(lk); |
| 437 | } |
| 438 | // Go to sleep. |
| 439 | p->chan = chan; |
| 440 | p->state = SLEEPING; |
| 441 | |
| 442 | sched(); |
| 443 | |
| 444 | // Tidy up. |
| 445 | p->chan = 0; |
| 446 | |
| 447 | // Reacquire original lock. |
| 448 | if(lk != &ptable.lock){ //DOC: sleeplock2 |
| 449 | release(&ptable.lock); |
| 450 | acquire(lk); |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | //PAGEBREAK! |
| 455 | // Wake up all processes sleeping on chan. |
| 456 | // The ptable lock must be held. |
| 457 | static void |
| 458 | wakeup1(void *chan) |
| 459 | { |
| 460 | struct proc *p; |
| 461 | |
| 462 | for(p = ptable.proc; p < &ptable.proc[NPROC]; p++) |
| 463 | if(p->state == SLEEPING && p->chan == chan) |
| 464 | p->state = RUNNABLE; |
| 465 | } |
| 466 | |
| 467 | // Wake up all processes sleeping on chan. |
| 468 | void |
| 469 | wakeup(void *chan) |
| 470 | { |
| 471 | acquire(&ptable.lock); |
| 472 | wakeup1(chan); |
| 473 | release(&ptable.lock); |
| 474 | } |
| 475 | |
| 476 | // Kill the process with the given pid. |
| 477 | // Process won't exit until it returns |
| 478 | // to user space (see trap in trap.c). |
| 479 | int |
| 480 | kill(int pid) |
| 481 | { |
| 482 | struct proc *p; |
| 483 | |
| 484 | acquire(&ptable.lock); |
| 485 | for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){ |
| 486 | if(p->pid == pid){ |
| 487 | p->killed = 1; |
| 488 | // Wake process from sleep if necessary. |
| 489 | if(p->state == SLEEPING) |
| 490 | p->state = RUNNABLE; |
| 491 | release(&ptable.lock); |
| 492 | return 0; |
| 493 | } |
| 494 | } |
| 495 | release(&ptable.lock); |
| 496 | return -1; |
| 497 | } |
| 498 | |
| 499 | //PAGEBREAK: 36 |
| 500 | // Print a process listing to console. For debugging. |
| 501 | // Runs when user types ^P on console. |
| 502 | // No lock to avoid wedging a stuck machine further. |
| 503 | void |
| 504 | procdump(void) |
| 505 | { |
| 506 | static char *states[] = { |
| 507 | [UNUSED] "unused" , |
| 508 | [EMBRYO] "embryo" , |
| 509 | [SLEEPING] "sleep " , |
| 510 | [RUNNABLE] "runble" , |
| 511 | [RUNNING] "run " , |
| 512 | [ZOMBIE] "zombie" |
| 513 | }; |
| 514 | int i; |
| 515 | struct proc *p; |
| 516 | char *state; |
| 517 | uint pc[10]; |
| 518 | |
| 519 | for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){ |
| 520 | if(p->state == UNUSED) |
| 521 | continue; |
| 522 | if(p->state >= 0 && p->state < NELEM(states) && states[p->state]) |
| 523 | state = states[p->state]; |
| 524 | else |
| 525 | state = "???" ; |
| 526 | cprintf("%d %s %s" , p->pid, state, p->name); |
| 527 | if(p->state == SLEEPING){ |
| 528 | getcallerpcs((uint*)p->context->ebp+2, pc); |
| 529 | for(i=0; i<10 && pc[i] != 0; i++) |
| 530 | cprintf(" %p" , pc[i]); |
| 531 | } |
| 532 | cprintf("\n" ); |
| 533 | } |
| 534 | } |
| 535 | |