1 | #include "types.h" |
2 | #include "defs.h" |
3 | #include "param.h" |
4 | #include "memlayout.h" |
5 | #include "mmu.h" |
6 | #include "x86.h" |
7 | #include "proc.h" |
8 | #include "spinlock.h" |
9 | |
10 | struct { |
11 | struct spinlock lock; |
12 | struct proc proc[NPROC]; |
13 | } ptable; |
14 | |
15 | static struct proc *initproc; |
16 | |
17 | int nextpid = 1; |
18 | extern void forkret(void); |
19 | extern void trapret(void); |
20 | |
21 | static void wakeup1(void *chan); |
22 | |
23 | void |
24 | pinit(void) |
25 | { |
26 | initlock(&ptable.lock, "ptable" ); |
27 | } |
28 | |
29 | // Must be called with interrupts disabled |
30 | int |
31 | cpuid() { |
32 | return mycpu()-cpus; |
33 | } |
34 | |
35 | // Must be called with interrupts disabled to avoid the caller being |
36 | // rescheduled between reading lapicid and running through the loop. |
37 | struct cpu* |
38 | mycpu(void) |
39 | { |
40 | int apicid, i; |
41 | |
42 | if(readeflags()&FL_IF) |
43 | panic("mycpu called with interrupts enabled\n" ); |
44 | |
45 | apicid = lapicid(); |
46 | // APIC IDs are not guaranteed to be contiguous. Maybe we should have |
47 | // a reverse map, or reserve a register to store &cpus[i]. |
48 | for (i = 0; i < ncpu; ++i) { |
49 | if (cpus[i].apicid == apicid) |
50 | return &cpus[i]; |
51 | } |
52 | panic("unknown apicid\n" ); |
53 | } |
54 | |
55 | // Disable interrupts so that we are not rescheduled |
56 | // while reading proc from the cpu structure |
57 | struct proc* |
58 | myproc(void) { |
59 | struct cpu *c; |
60 | struct proc *p; |
61 | pushcli(); |
62 | c = mycpu(); |
63 | p = c->proc; |
64 | popcli(); |
65 | return p; |
66 | } |
67 | |
68 | //PAGEBREAK: 32 |
69 | // Look in the process table for an UNUSED proc. |
70 | // If found, change state to EMBRYO and initialize |
71 | // state required to run in the kernel. |
72 | // Otherwise return 0. |
73 | static struct proc* |
74 | allocproc(void) |
75 | { |
76 | struct proc *p; |
77 | char *sp; |
78 | |
79 | acquire(&ptable.lock); |
80 | |
81 | for(p = ptable.proc; p < &ptable.proc[NPROC]; p++) |
82 | if(p->state == UNUSED) |
83 | goto found; |
84 | |
85 | release(&ptable.lock); |
86 | return 0; |
87 | |
88 | found: |
89 | p->state = EMBRYO; |
90 | p->pid = nextpid++; |
91 | |
92 | release(&ptable.lock); |
93 | |
94 | // Allocate kernel stack. |
95 | if((p->kstack = kalloc()) == 0){ |
96 | p->state = UNUSED; |
97 | return 0; |
98 | } |
99 | sp = p->kstack + KSTACKSIZE; |
100 | |
101 | // Leave room for trap frame. |
102 | sp -= sizeof *p->tf; |
103 | p->tf = (struct trapframe*)sp; |
104 | |
105 | // Set up new context to start executing at forkret, |
106 | // which returns to trapret. |
107 | sp -= 4; |
108 | *(uint*)sp = (uint)trapret; |
109 | |
110 | sp -= sizeof *p->context; |
111 | p->context = (struct context*)sp; |
112 | memset(p->context, 0, sizeof *p->context); |
113 | p->context->eip = (uint)forkret; |
114 | |
115 | return p; |
116 | } |
117 | |
118 | //PAGEBREAK: 32 |
119 | // Set up first user process. |
120 | void |
121 | userinit(void) |
122 | { |
123 | struct proc *p; |
124 | extern char _binary_initcode_start[], _binary_initcode_size[]; |
125 | |
126 | p = allocproc(); |
127 | |
128 | initproc = p; |
129 | if((p->pgdir = setupkvm()) == 0) |
130 | panic("userinit: out of memory?" ); |
131 | inituvm(p->pgdir, _binary_initcode_start, (int)_binary_initcode_size); |
132 | p->sz = PGSIZE; |
133 | memset(p->tf, 0, sizeof(*p->tf)); |
134 | p->tf->cs = (SEG_UCODE << 3) | DPL_USER; |
135 | p->tf->ds = (SEG_UDATA << 3) | DPL_USER; |
136 | p->tf->es = p->tf->ds; |
137 | p->tf->ss = p->tf->ds; |
138 | p->tf->eflags = FL_IF; |
139 | p->tf->esp = PGSIZE; |
140 | p->tf->eip = 0; // beginning of initcode.S |
141 | |
142 | safestrcpy(p->name, "initcode" , sizeof(p->name)); |
143 | p->cwd = namei("/" ); |
144 | |
145 | // this assignment to p->state lets other cores |
146 | // run this process. the acquire forces the above |
147 | // writes to be visible, and the lock is also needed |
148 | // because the assignment might not be atomic. |
149 | acquire(&ptable.lock); |
150 | |
151 | p->state = RUNNABLE; |
152 | |
153 | release(&ptable.lock); |
154 | } |
155 | |
156 | // Grow current process's memory by n bytes. |
157 | // Return 0 on success, -1 on failure. |
158 | int |
159 | growproc(int n) |
160 | { |
161 | uint sz; |
162 | struct proc *curproc = myproc(); |
163 | |
164 | sz = curproc->sz; |
165 | if(n > 0){ |
166 | if((sz = allocuvm(curproc->pgdir, sz, sz + n)) == 0) |
167 | return -1; |
168 | } else if(n < 0){ |
169 | if((sz = deallocuvm(curproc->pgdir, sz, sz + n)) == 0) |
170 | return -1; |
171 | } |
172 | curproc->sz = sz; |
173 | switchuvm(curproc); |
174 | return 0; |
175 | } |
176 | |
177 | // Create a new process copying p as the parent. |
178 | // Sets up stack to return as if from system call. |
179 | // Caller must set state of returned proc to RUNNABLE. |
180 | int |
181 | fork(void) |
182 | { |
183 | int i, pid; |
184 | struct proc *np; |
185 | struct proc *curproc = myproc(); |
186 | |
187 | // Allocate process. |
188 | if((np = allocproc()) == 0){ |
189 | return -1; |
190 | } |
191 | |
192 | // Copy process state from proc. |
193 | if((np->pgdir = copyuvm(curproc->pgdir, curproc->sz)) == 0){ |
194 | kfree(np->kstack); |
195 | np->kstack = 0; |
196 | np->state = UNUSED; |
197 | return -1; |
198 | } |
199 | np->sz = curproc->sz; |
200 | np->parent = curproc; |
201 | *np->tf = *curproc->tf; |
202 | |
203 | // Clear %eax so that fork returns 0 in the child. |
204 | np->tf->eax = 0; |
205 | |
206 | for(i = 0; i < NOFILE; i++) |
207 | if(curproc->ofile[i]) |
208 | np->ofile[i] = filedup(curproc->ofile[i]); |
209 | np->cwd = idup(curproc->cwd); |
210 | |
211 | safestrcpy(np->name, curproc->name, sizeof(curproc->name)); |
212 | |
213 | pid = np->pid; |
214 | |
215 | acquire(&ptable.lock); |
216 | |
217 | np->state = RUNNABLE; |
218 | |
219 | release(&ptable.lock); |
220 | |
221 | return pid; |
222 | } |
223 | |
224 | // Exit the current process. Does not return. |
225 | // An exited process remains in the zombie state |
226 | // until its parent calls wait() to find out it exited. |
227 | void |
228 | exit(void) |
229 | { |
230 | struct proc *curproc = myproc(); |
231 | struct proc *p; |
232 | int fd; |
233 | |
234 | if(curproc == initproc) |
235 | panic("init exiting" ); |
236 | |
237 | // Close all open files. |
238 | for(fd = 0; fd < NOFILE; fd++){ |
239 | if(curproc->ofile[fd]){ |
240 | fileclose(curproc->ofile[fd]); |
241 | curproc->ofile[fd] = 0; |
242 | } |
243 | } |
244 | |
245 | begin_op(); |
246 | iput(curproc->cwd); |
247 | end_op(); |
248 | curproc->cwd = 0; |
249 | |
250 | acquire(&ptable.lock); |
251 | |
252 | // Parent might be sleeping in wait(). |
253 | wakeup1(curproc->parent); |
254 | |
255 | // Pass abandoned children to init. |
256 | for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){ |
257 | if(p->parent == curproc){ |
258 | p->parent = initproc; |
259 | if(p->state == ZOMBIE) |
260 | wakeup1(initproc); |
261 | } |
262 | } |
263 | |
264 | // Jump into the scheduler, never to return. |
265 | curproc->state = ZOMBIE; |
266 | sched(); |
267 | panic("zombie exit" ); |
268 | } |
269 | |
270 | // Wait for a child process to exit and return its pid. |
271 | // Return -1 if this process has no children. |
272 | int |
273 | wait(void) |
274 | { |
275 | struct proc *p; |
276 | int havekids, pid; |
277 | struct proc *curproc = myproc(); |
278 | |
279 | acquire(&ptable.lock); |
280 | for(;;){ |
281 | // Scan through table looking for exited children. |
282 | havekids = 0; |
283 | for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){ |
284 | if(p->parent != curproc) |
285 | continue; |
286 | havekids = 1; |
287 | if(p->state == ZOMBIE){ |
288 | // Found one. |
289 | pid = p->pid; |
290 | kfree(p->kstack); |
291 | p->kstack = 0; |
292 | freevm(p->pgdir); |
293 | p->pid = 0; |
294 | p->parent = 0; |
295 | p->name[0] = 0; |
296 | p->killed = 0; |
297 | p->state = UNUSED; |
298 | release(&ptable.lock); |
299 | return pid; |
300 | } |
301 | } |
302 | |
303 | // No point waiting if we don't have any children. |
304 | if(!havekids || curproc->killed){ |
305 | release(&ptable.lock); |
306 | return -1; |
307 | } |
308 | |
309 | // Wait for children to exit. (See wakeup1 call in proc_exit.) |
310 | sleep(curproc, &ptable.lock); //DOC: wait-sleep |
311 | } |
312 | } |
313 | |
314 | //PAGEBREAK: 42 |
315 | // Per-CPU process scheduler. |
316 | // Each CPU calls scheduler() after setting itself up. |
317 | // Scheduler never returns. It loops, doing: |
318 | // - choose a process to run |
319 | // - swtch to start running that process |
320 | // - eventually that process transfers control |
321 | // via swtch back to the scheduler. |
322 | void |
323 | scheduler(void) |
324 | { |
325 | struct proc *p; |
326 | struct cpu *c = mycpu(); |
327 | c->proc = 0; |
328 | |
329 | for(;;){ |
330 | // Enable interrupts on this processor. |
331 | sti(); |
332 | |
333 | // Loop over process table looking for process to run. |
334 | acquire(&ptable.lock); |
335 | for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){ |
336 | if(p->state != RUNNABLE) |
337 | continue; |
338 | |
339 | // Switch to chosen process. It is the process's job |
340 | // to release ptable.lock and then reacquire it |
341 | // before jumping back to us. |
342 | c->proc = p; |
343 | switchuvm(p); |
344 | p->state = RUNNING; |
345 | |
346 | swtch(&(c->scheduler), p->context); |
347 | switchkvm(); |
348 | |
349 | // Process is done running for now. |
350 | // It should have changed its p->state before coming back. |
351 | c->proc = 0; |
352 | } |
353 | release(&ptable.lock); |
354 | |
355 | } |
356 | } |
357 | |
358 | // Enter scheduler. Must hold only ptable.lock |
359 | // and have changed proc->state. Saves and restores |
360 | // intena because intena is a property of this |
361 | // kernel thread, not this CPU. It should |
362 | // be proc->intena and proc->ncli, but that would |
363 | // break in the few places where a lock is held but |
364 | // there's no process. |
365 | void |
366 | sched(void) |
367 | { |
368 | int intena; |
369 | struct proc *p = myproc(); |
370 | |
371 | if(!holding(&ptable.lock)) |
372 | panic("sched ptable.lock" ); |
373 | if(mycpu()->ncli != 1) |
374 | panic("sched locks" ); |
375 | if(p->state == RUNNING) |
376 | panic("sched running" ); |
377 | if(readeflags()&FL_IF) |
378 | panic("sched interruptible" ); |
379 | intena = mycpu()->intena; |
380 | swtch(&p->context, mycpu()->scheduler); |
381 | mycpu()->intena = intena; |
382 | } |
383 | |
384 | // Give up the CPU for one scheduling round. |
385 | void |
386 | yield(void) |
387 | { |
388 | acquire(&ptable.lock); //DOC: yieldlock |
389 | myproc()->state = RUNNABLE; |
390 | sched(); |
391 | release(&ptable.lock); |
392 | } |
393 | |
394 | // A fork child's very first scheduling by scheduler() |
395 | // will swtch here. "Return" to user space. |
396 | void |
397 | forkret(void) |
398 | { |
399 | static int first = 1; |
400 | // Still holding ptable.lock from scheduler. |
401 | release(&ptable.lock); |
402 | |
403 | if (first) { |
404 | // Some initialization functions must be run in the context |
405 | // of a regular process (e.g., they call sleep), and thus cannot |
406 | // be run from main(). |
407 | first = 0; |
408 | iinit(ROOTDEV); |
409 | initlog(ROOTDEV); |
410 | } |
411 | |
412 | // Return to "caller", actually trapret (see allocproc). |
413 | } |
414 | |
415 | // Atomically release lock and sleep on chan. |
416 | // Reacquires lock when awakened. |
417 | void |
418 | sleep(void *chan, struct spinlock *lk) |
419 | { |
420 | struct proc *p = myproc(); |
421 | |
422 | if(p == 0) |
423 | panic("sleep" ); |
424 | |
425 | if(lk == 0) |
426 | panic("sleep without lk" ); |
427 | |
428 | // Must acquire ptable.lock in order to |
429 | // change p->state and then call sched. |
430 | // Once we hold ptable.lock, we can be |
431 | // guaranteed that we won't miss any wakeup |
432 | // (wakeup runs with ptable.lock locked), |
433 | // so it's okay to release lk. |
434 | if(lk != &ptable.lock){ //DOC: sleeplock0 |
435 | acquire(&ptable.lock); //DOC: sleeplock1 |
436 | release(lk); |
437 | } |
438 | // Go to sleep. |
439 | p->chan = chan; |
440 | p->state = SLEEPING; |
441 | |
442 | sched(); |
443 | |
444 | // Tidy up. |
445 | p->chan = 0; |
446 | |
447 | // Reacquire original lock. |
448 | if(lk != &ptable.lock){ //DOC: sleeplock2 |
449 | release(&ptable.lock); |
450 | acquire(lk); |
451 | } |
452 | } |
453 | |
454 | //PAGEBREAK! |
455 | // Wake up all processes sleeping on chan. |
456 | // The ptable lock must be held. |
457 | static void |
458 | wakeup1(void *chan) |
459 | { |
460 | struct proc *p; |
461 | |
462 | for(p = ptable.proc; p < &ptable.proc[NPROC]; p++) |
463 | if(p->state == SLEEPING && p->chan == chan) |
464 | p->state = RUNNABLE; |
465 | } |
466 | |
467 | // Wake up all processes sleeping on chan. |
468 | void |
469 | wakeup(void *chan) |
470 | { |
471 | acquire(&ptable.lock); |
472 | wakeup1(chan); |
473 | release(&ptable.lock); |
474 | } |
475 | |
476 | // Kill the process with the given pid. |
477 | // Process won't exit until it returns |
478 | // to user space (see trap in trap.c). |
479 | int |
480 | kill(int pid) |
481 | { |
482 | struct proc *p; |
483 | |
484 | acquire(&ptable.lock); |
485 | for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){ |
486 | if(p->pid == pid){ |
487 | p->killed = 1; |
488 | // Wake process from sleep if necessary. |
489 | if(p->state == SLEEPING) |
490 | p->state = RUNNABLE; |
491 | release(&ptable.lock); |
492 | return 0; |
493 | } |
494 | } |
495 | release(&ptable.lock); |
496 | return -1; |
497 | } |
498 | |
499 | //PAGEBREAK: 36 |
500 | // Print a process listing to console. For debugging. |
501 | // Runs when user types ^P on console. |
502 | // No lock to avoid wedging a stuck machine further. |
503 | void |
504 | procdump(void) |
505 | { |
506 | static char *states[] = { |
507 | [UNUSED] "unused" , |
508 | [EMBRYO] "embryo" , |
509 | [SLEEPING] "sleep " , |
510 | [RUNNABLE] "runble" , |
511 | [RUNNING] "run " , |
512 | [ZOMBIE] "zombie" |
513 | }; |
514 | int i; |
515 | struct proc *p; |
516 | char *state; |
517 | uint pc[10]; |
518 | |
519 | for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){ |
520 | if(p->state == UNUSED) |
521 | continue; |
522 | if(p->state >= 0 && p->state < NELEM(states) && states[p->state]) |
523 | state = states[p->state]; |
524 | else |
525 | state = "???" ; |
526 | cprintf("%d %s %s" , p->pid, state, p->name); |
527 | if(p->state == SLEEPING){ |
528 | getcallerpcs((uint*)p->context->ebp+2, pc); |
529 | for(i=0; i<10 && pc[i] != 0; i++) |
530 | cprintf(" %p" , pc[i]); |
531 | } |
532 | cprintf("\n" ); |
533 | } |
534 | } |
535 | |